This tutorial gives an example of using a I2C screen device, with LCD display and RGB color background.
- A STMicroelectronics evaluation board with STM32L152RU Cortex-M3 MCU, order code NUCLEO-L152RE (name on PCB: MB1136).
- USB 2.0 male to micro USB cable (supplied with evaluation kit).
- A full installation of an Hyperpanel OS release on a linux based PC including tools for flashing and debugging. This tutorial requires release V30.03.01 for MB1136 or higher. Hyperpanel OS releases are available for free in the Download section of the website.
- A Lunix PC with ARM gcc compiler, ARM gdb debugger and minicom installed.
- A text editor to edit or modify source codes (We are using vi in our demo).
- A Grove-LCD RGB Backlight V4.0 device from seeedstudio.
Hyperpanel OS V30.03.01 for M1136 (hypv300301.zip) or higher, available in the Download section.
Binary file
– On www.tutorial.hyperpanel.com, select Download from the main menu.
– Download “Hyperpanel OS V30.03.01 for MB1136” or higher release for the MB1136 kit. (hypv300301.zip).
– On your PC Linux, copy and unzip the zip file in your root directory, for example:
cp hypv300301.zip /home/hyperpanel cd /home/hyperpanel unzip hypv300301.zip
– With a text editor, update hhome environment variable in the stm32m3 file:
cd ~/hypv300301/shells vi stm32m3
Update the first line, according to your root directory:
export hhome=/home/hyperpanel/hypv300301
– Save this file and an execute the command:
source stm32m3
– From this tutorial, use the button “Binary file” to download the zip file containing the binary. Unzip this file:
unzip hpos-tuto515-bin.zip
– Copy this binary file in HyperPanelOS release:
cp lcd_rgb.bin ~/hypv300301/boards/stm32m3/exe
– Connect the LED bargraph to the MB1136.
SCREEN MB1136 SIGNAL WIRE
SCL <------------> CN10/PB8 I2C_SCL White
SDA <------------> CN10/PB9 I2C_SDA Green
VCC <------------> CN7/+3V3 Power Red
GND <------------> CN7/GND Ground Black
– Connect the MB1136 board to a USB port on your Linux PC using the USB cable supplied with the board. Wait for a window to appear, then close it.
– Open a Terminal window and run minicom to get access to the Hyperpanel OS serial port and to the application messages:
minicom -D /dev/ttyACM0 -b 115200
– Open another Terminal window on your computer and enter the following commands:
cd ~/hypv300301/shells source stm32m3 exe
– Upload software to the board:
hgdb romload stm32m3 lcd_rgb
You should see messages similar to these:
Open On-Chip Debugger 0.10.0+dev-00001-g0ecee83-dirty (2024-02-10-06:53) Licensed under GNU GPL v2 For bug reports, read http://openocd.org/doc/doxygen/bugs.html 0x00012a8c in ?? () target halted due to debug-request, current mode: Thread xPSR: 0x01000000 pc: 0x00004158 msp: 0x10002000 auto erase enabled target halted due to breakpoint, current mode: Thread xPSR: 0x61000000 pc: 0x20000046 msp: 0x10002000 wrote 393216 bytes from file lcd_rgb.bin in 11.143908s (34.458 KiB/s) lcd_rgb.elf: No such file or directory.
– You can now press on the reset button (black button) of the MB1225. Hyperpanel OS and the application will start. The screen displays some texts, the backlight color constantly changed from red, green, blue , white, etc. The application also send a clock counter on the serial port.
To go further
If you want to edit the source code, write modifications, compile, link, etc., here’s how to do it :
- From this tutorial, use the button “Source code” to download the zip file containing the source file. Unzip this file:
unzip hpos-tuto515-source.zip
- Copy this source code in HyperPanelOS release:
cp lcd_rgb.c ~/hypv300301/user/stm32app
- Copy the link file in Hyperpanel release:
cp lcd_rgb.lst ~/hypv300301/boards/stm32m3/exe
- You can edit and make any modifications you want in the source file.
cd ~/hypv300301/user/stm32app vi lcd_rgb.c
- Save the source file.
- Compile the source file:
cd ~/hypv300301/user/stm32app cmm lcd_rgb
- Make a link edit to create a new executable:
exe lhypos lcd_rgb
- You can now upload this new binary to the board, in the same way as in the previous Installation chapter.
- The app gives an “how to use” example of an I2C device in “write” mode. The I2C driver available with HyperPanel OS support several controller/buses in parallel. In the case of the MB1136, ther is only one bus.
- The Grove-LCD RGB Backlight component include 2 different I2C devices: One is the LCD display, the other one is the RGB colored background.
- The I2C driver support IO lists, including waits, conditionnal jumps and intricated loops. We use here some “waits” command for initialization sequence, according information of datasheets.
- The driver provides two software interfaces in order to allow ease of use and versatility: Blocking and non blocking interfaces. We use here the blocking interface (i2c_write()).
- Compared with other I2C devices featured in other tutorials, this RGB screen requires 5V rather than 3.3V power.
Documents
Links
hypos-tuto515-source
/* ** lcd_rgb.c - Sample code for HyperpanelOS ============================== ** ** ** ** This simple code is located into the application container, it is run ** ** by the VMK sub-operating system. On the other hand, the I/O container ** ** runs all the drivers that are VMIO finite state machines. ** ** ** ** The goal of this small app is to use a LCD-RGB I2C screen device. ** ** ** ** ======================================================================= ** */ /* Documentation for I2C devices -------------------------------------------- (1) HD44780.pdf Hitachi Dot Matric Liquit Crystal Display Controller/Driver (2) PCA9633.pdf NXP 4-bit Fm+I2C-Bus LED driver - Product data sheet */ /* Include files and external reference -------------------------------------*/ #include <hypos.h> // Hyperpanel OS basic interfaces. */ #include <drv_asy.h> // Prototype of "asy_write()". */ #include <drv_i2c.h> // Prototype of "i2c_*()". */ /* Internal defines of this module ------------------------------------------*/ #define TICK 1000 // Code for tick event. #define DUMMY_AD 0xFF // I2C dev address - Dummy for wait. #define LCD_AD 0x7c // I2C dev address - LCD. #define RGB_AD 0xc4 // I2C dev address - RGB. #define RED 0x04 // I2C register - RGB background color. #define GREEN 0x03 // I2C register - RGB background color. #define BLUE 0x02 // I2C register - RGB background color. #define SCREEN_INIT 0 // I2C command - Screen initialisation #define SET_LINE1 2 // I2C command - Cursor on line 1 #define SET_LINE2 4 // I2C command - Cursor on line 2 /* Internal global variables of this module --------------------------------*/ static unsigned int idto ; // Timer identifier. /* SCREEN_INIT command ......................................................*/ static const char screen_init[] = // I2C command - Screen initialisation { /* Length-1, Address, Control byte, Data byte */ 1, DUMMY_AD , 50 , // I2C temporisation 50 ms 2, LCD_AD , 0x80 , 0x3C , // LCD dev : FUNCTION_SET try 1 // Ctrl byte: 10000000 RS=0 // Data byte: 00111100 2-line, on 1, DUMMY_AD , 40 , // I2C temporisation 40 ms 2, LCD_AD , 0x80 , 0x3C , // LCD dev : FUNCTION_SET try 2 // Ctrl byte: 10000000 RS=0 // Data byte: 00111100 2-line, on 1, DUMMY_AD , 40 , // I2C temporisation 40 ms 2, LCD_AD , 0x80 , 0x3C , // LCD dev : FUNCTION_SET try 3 // Ctrl byte: 10000000 RS=0 // Data byte: 00111100 2-line, on 2, LCD_AD , 0x80 , 0x0C , // LCD dev : DISPLAY_SWITCH // Ctrl byte: 10000000 RS=0 // Data byte: 00001100 on,off,off 1, DUMMY_AD , 40 , // I2C temporisation more than 39us 2, LCD_AD , 0x80 , 0x01 , // LCD dev : SCREEN_CLEAR // Ctrl byte: 10000000 RS=0 // Data byte: 00000001 clear 1, DUMMY_AD , 2 , // I2C temporisation more than 1.53ms 2, RGB_AD , 0x00 , 0x00 , // RGB dev : REG_MODE1, init // Register : 0x00 // Data : 0x00 2, RGB_AD , 0x08 , 0xFF , // RGB dev : REG_OUTPUT // Register : 0x08 // Data : 0xFF PWM & GRPPWM 0 , // End of command set } ; // /* SET_LINE1 command ........................................................*/ static const char set_line1[] = // I2C command - Screen initialisation { /* Length-1, Address, Control byte, Data byte */ 2, LCD_AD , 0x80 , 0x80 , // LCD dev : CURSOR_RETURN // Ctrl byte: 10000000 RS=0 // Data byte: 10000000 line 1, on 0 , // End of commands } ; // /* SET_LINE2 command ........................................................*/ static const char set_line2[] = // I2C command - Screen initialisation { /* Length-1, Address, Control byte, Data byte */ 2, LCD_AD , 0x80 , 0xC0 , // LCD dev : CURSOR_RETURN // Ctrl byte: 10000000 RS=0 // Data byte: 11000000 line 2, on 0 , // End of commands } ; // static char *command[] = // I2C commands table { // (char*)&screen_init[0] , // I2C command - SCREEN_INIT (char*)0 , // Padding (char*)&set_line1[0] , // I2C command - SET_LINE1 (char*)0 , // Padding (char*)&set_line2[0] , // I2C command - SET_LINE2 (char*)0 // Padding } ; // static const char *text[] = // Messages on scree { "Hyperpanel Red" , // Message for "red" animation "Hyperpanel Green" , // Message for "green" animation "Hyperpanel Blue" , // Message for "blue" animation "Hyperpanel White" , // Message for "white" animation } ; /* Prototypes --------------------------------------------------------------*/ static int loop_app_task(void*) ; // Prototype static int wait_evt(void) ; // Prototype static void set_command(int) ; // Prototype static void write_string(char*) ; // Prototype static void set_color(int,int) ; // Prototype /* Beginning of the code --------------------------------------------------- loop_app_tsk Application entry point wait_evt Wait for applicative events set_command Write a command on the screen write_string Write a character string on the screen set_color Set a color level on the screen background */ /* Procedure loop_app_tsk -------------------------------------------------- Purpose : This is our task main loop. */ int loop_app_tsk (void *param) { int ev = TICK ; // Our event int curtime = 0 ; // Current time char mess[16] ; // Message to be sent on ASY0 char col = -1 ; // Color short lev = -4 ; // Level /* Step 1 - Start a timer that will send an event every second ..............*/ set_uto(CLOCK , // Timer mode: clock 100 , // Duration in milliseconds TICK , 0 , // Event code and reserve field &idto ); // Timer identifier /* Step 1 - LCD & RGB screen initialisation .................................*/ asy_write(0,(unsigned char*)"Init ... ",4); set_command(SCREEN_INIT) ; // LCD/RGB initialization sequence asy_write(0,(unsigned char*)"donern",6); /* Step 3 - Main loop .......................................................*/ wait_ev : // Beginning of loop label if ( ev == TICK ) // If the event is the tick event { // curtime ++ ; // Time incrementation /* Step 3.1 - Display timer on serial port and on screen ....................*/ hsprintf(mess , // Format de timer message. " %02d:%02d:%02d:%01d" , // ((curtime/10)/3600)%24 , // Hour. ((curtime/10)/ 60)%60 , // Minutes. (curtime/10) %60 , // Seconds. curtime%10 ); // Thenths. if (!(curtime%10)) // Each second, send a trace. { // asy_write(0 , // Write on ASY0 (unsigned char*)mess , // the "mess" message strlen(mess) ); // Count of bytes to be sent asy_write(0 , // Write on ASY0 (unsigned char*)"rn" , // the "mess" message 2 ); // Count of bytes to be sent } set_command(SET_LINE2) ; // Cursor on line 2. write_string(mess) ; // Write current time on screen. set_command(SET_LINE1) ; // Cursor on line 1. /* Step 3.2 - Background color animation ....................................*/ lev=(lev+4)%128 ; // Brightness level if (!(lev)) col=(col+1)%4 ; // Red/Green/Blue/White selection write_string( // Display title text on the screen. (char*)text[(int)col]); switch (col) { case 0 : set_color(RED , lev) ; // Set RED level set_color(GREEN, 0) ; // Set GREEN level set_color(BLUE , 0) ; // Set BLUE level break ; case 1 : set_color(RED , 0) ; // Set RED level set_color(GREEN, lev) ; // Set GREEN level set_color(BLUE , 0) ; // Set BLUE level break ; case 2 : set_color(RED , 0) ; // Set RED level set_color(GREEN, 0) ; // Set GREEN level set_color(BLUE , lev) ; // Set BLUE level break ; case 3 : set_color(RED , lev) ; // Set RED level set_color(GREEN, lev) ; // Set GREEN level set_color(BLUE , lev) ; // Set BLUE level break ; } } ev = wait_evt() ; // Unschedule until an event is received goto wait_ev ; // Wait for the next event return 0 ; // Return code of the procedure } /* Procedure wait_evt ------------------------------------------------------*/ /* Purpose : Unschedule until the next event is received, whatever it is. */ static int wait_evt (void) { unsigned int waitlist[1][3] ; // Parameter of "waitevt_task" /***************************************************************************** * Step 1 : Build a list with one WAIT_CODEINT entry that will accept all * * ------ the event codes ranging from 0 to 20000. Then call * * "waitevt_task", we will be unscheduled until the next event will * * be received * *****************************************************************************/ waitlist[0][0] = WAIT_CODEINT ; // All events with waitlist[0][1] = 0 ; // a code between 0 waitlist[0][2] = 20000 ; // and 20000 waitevt_task(waitlist , // Address of waiting list 1 , // Size of "waitlist[]" 0 , // maximum waiting time = no 0 ) ; // Do not purge previous events /***************************************************************************** * Step 2 : Here we are scheduled again. The VMK has written into its * * ------ global variable "task_evt" a copy of the event that has * * scheduled us again. * *****************************************************************************/ return task_evt.code ; // Return event code } /* Procedure set_command ---------------------------------------------------*/ /* Purpose : Send a set of commands to I2C devices. */ static void set_command(int cmd) { int ret = 0 ; // Return procedure code char mess[64] ; // Message to be sent on ASY0 ret = i2c_write( // Send I2C command 0 , // Controller number PRO_I2C_DEV , // Protocol code -1 , // Target address unused with FLG_MULTI 0 , // Target sub-address (unsigned char*)command[cmd] , // Commands 0 , // Count of bytes unused with FLG_MULTI FLG_MULTI ); // List of option flags if (ret) // i2c_write() return an error { // hsprintf(mess, // Format an error message "ERR <i2c_write> ret=%d",ret); // asy_write(0 , // Write message on ASY0 (unsigned char*)mess , // strlen(mess) ); // } // } /* Procedure write_string --------------------------------------------------*/ /* Purpose : write a character string on the screen. */ static void write_string(char *s) { int of = 0 ; // Offset for I2C frame building unsigned char buf[32] ; // Message to be sent on I2C int ret = 0 ; // Return procedure code char mess[64] ; // Message to be sent on ASY0 memset(buf ,strlen(s)+1,1);of++ ; // Lenght -1 ot the message memset(buf+of, LCD_AD ,1);of++ ; // write address 01111100 memset(buf+of, 0x40 ,1);of++ ; // Control Byte 01000000 (RS=1) memcpy(buf+of,s,strlen(s) ) ; // of=of+strlen(s) ; // memset(buf+of,0,1) ; // End of frame ret = i2c_write( // Send I2C command 0 , // Controller number PRO_I2C_DEV , // Protocol code -1 , // Target address unused with FLG_MULTI 0 , // Target sub-address buf , // Commands 0 , // Count of bytes unused with FLG_MULTI FLG_MULTI ); // List of option flags if (ret) // i2c_write() return an error { // hsprintf(mess, // Format an error message "ERR <i2c_write> ret=%d",ret); // asy_write(0 , // Write message on ASY0 (unsigned char*)mess , // strlen(mess) ); // } // } /* Procedure set_color -----------------------------------------------------*/ /* Purpose : Set a color level on RGB background */ static void set_color(int color, int level) { int of = 0 ; // Offset for I2C frame building unsigned char buf[8] ; // Message to be sent on I2C int ret = 0 ; // Return procedure code char mess[64] ; // Message to be sent on ASY0 memset(buf , 2 , 1); of++ ; // Lenght -1 ot the message memset(buf+of, RGB_AD, 1); of++ ; // write address memset(buf+of, color , 1); of++ ; // REG_RED memset(buf+of, level , 1); of++ ; // memset(buf+of, 0, 1) ; // End of frame ret = i2c_write( // Send I2C command 0 , // Controller number PRO_I2C_DEV , // Crotocol code -1 , // Target address unused with FLG_MULTI 0 , // Target sub-address buf , // Commands 0 , // Count of bytes unused with FLG_MULTI FLG_MULTI ); // List of option flags if (ret) // i2c_write() return an error { // hsprintf(mess, // Format an error message "ERR <i2c_write> ret=%d",ret); // asy_write(0 , // Write message on ASY0 (unsigned char*)mess , // strlen(mess) ); // } // }
Terminal
~/hypv300301/boards/stm32m3/exe >> hgdb GNU gdb (7.10-1ubuntu3+9) 7.10 Copyright (C) 2015 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. Type "show copying" and "show warranty" for details. This GDB was configured as "--host=x86_64-linux-gnu --target=arm-none-eabi". Type "show configuration" for configuration details. For bug reporting instructions, please see: <http://www.gnu.org/software/gdb/bugs/>. Find the GDB manual and other documentation resources online at: <http://www.gnu.org/software/gdb/documentation/>. For help, type "help". Type "apropos word" to search for commands related to "word". man Display again this manual stm32m3 Send the reset halt command to openocd armdisconnect Deconnexion command peek adr Read and display a 32 bit value at adr poke adr val Write a val 32 bits value at adr poke_m adr msk val Write bits in a 32 bits word with a mask peekrange base o1 o2 Read 32 bits words from base+o1 to base+o2 affichb adr size Print a memory area starting at adr vmio n Display the tnote_evt_s debug table int Display the tnote_it debug table rte Return from interrupt romload stm32m3 app Write the app executable file in flash rom stm32m3 app Connect to target and load app dbg symbols gpio bank n state Set GPIO n (0-15) of bank (1-9) to 0/1 clock 0/1/2/3 Output SYSCLK/PLLI2S/HSE/PLL to MO2/PC9 (gdb) romload stm32m3 lcd_rgb Open On-Chip Debugger 0.10.0+dev-00001-g0ecee83-dirty (2017-02-10-06:53) Licensed under GNU GPL v2 For bug reports, read http://openocd.org/doc/doxygen/bugs.html 0x00002ee2 in ?? () target halted due to debug-request, current mode: Thread xPSR: 0x01000000 pc: 0x00003158 msp: 0x10002000 auto erase enabled target halted due to breakpoint, current mode: Thread xPSR: 0x61000000 pc: 0x20000046 msp: 0x10002000 wrote 393216 bytes from file lcd_rgb.bin in 11.128943s (34.505 KiB/s) (gdb)